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An analysis of a perfectly conducting capacitive circuit 
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Abstract. The plates of a charged capacitor are connected by a loop of perfectly conducting 
wire. An integral-differential equation is derived for the charge on the capacitor and an 
existence and uniqueness result for the solution of the corresponding initial value problem 
is demonstrated. A short example illustrates the behaviour of the current in the circuit. 

Introduction 

The plates of a charged capacitor are connected by a loop of perfectly conducting 
wire. The behaviour of the current in the resulting circuit is difficult to determine by 
elementary means. It is natural to attempt to analyse the problem as an LCR,,, circuit 
WIIC-LC L ,> g,c" , ,rGrc ,c  >G,'-lILu"L.La,,LG, ,> capabrmr,G-c all" f i r a d  1J I a " l a , , u I I  LCbI>LdllCC-. 

However, radiation resistance is usually computed for a harmonically driven circuit 
and its value depends on the frequency. The circuit described above is not driven; 
even if one assumes an alternating current, the frequency is unknown. An analysis 
along these lines would require non-trivial assumptions on the behaviour of the current 
and would not be rigorous. (For more on the application of elementary methods, one 
ce:: co::su!t the !i:eravdre nn the c!nse!y re!a!ed t~wo-cepaci:or prnb!em, e.g. Cuvaj 1958 
and Powell 1979.) This paper analyses the circuit starting from Maxwell's equations 
or, more accurately, the equivalent reformulation of those equations in terms of vector 
and scalar potentials. Assuming uniformity of current, an integral-differential equation 
is derived for the charge on the capacitor. The existence and uniqueness of  the solution 
of the corresponding initial value problem is demonstrated, provided the diameter of 
the circxit is no: 
it can be approximated in light of this result. 

The body of the paper is in three sections. In the first section assumptions are listed 
and the equation for the charge on the capacitor is derived. In  the second section the 
existence and uniqueness result is demonstrated. The third section outlines a computa- 
tion illustrating the behaviour of such a circuit. 

... L--- I :" -"--"~-:--~,~:-~..-~--"- 0:-  -"-"":."----..> " :"--A:-.:-.. ---:-A".."- 
L 

!.rg.. The so!.!iQn current is diffiC.!! compute exp!ici!!y bl?! 

1. Assumptions and derivation of equation for current 

The MKSA system of units is employed. Time derivatives are denoted by dots over 
variables. Notation is standard (Jackson 1975). 

0305-4470/92/133827+08$04.50 0 1992 IOP Publishing Ltd 3827 



3828 G F Paulik et a1 

The parallel-plate capacitor has capacitance, C, and is without dielectric. The plates 
are, say, very thin identical disks and the dimensions of the capacitor are small in 
comparison to the radius, ro, of the circular loop of connecting wire. In particular, the 
gap between the capacitor plates is very small. The wire is attached at the centres of 
the plates. The cross-sectional radius of the wire is r , ,  rI (< rn. The current, I,  is assumed 
to be uniform within the perfectly conducting circuit and the charge density, p, is 
assumed to be uniform on the plates. 

Expressing the electric and magnetic induction fields E and B in terms of vector 
and scalar potentials A and @ belonging to the Lorentz gauge yields 

(i) B = V x A  

(ii) E = - A - V @  

lx-x'l\ 

(iii) A(x, t ) = -  d'x' 
4 a  Ix-x'I 

Here J is the current density and ,U,,, zo and c are the permeability, permittivity and 
speed of light constants. With regards to initial conditions, it is assumed that J ( x ,  1 )  = O  
for t s O  and p ( x ,  I )  = p o ( x )  for t c 0 .  Here po(x )  is the charge density on the capacitor 
plates corresponding to the initial charge, Q". Note that since the capacitor plates are 
thin, the charge is distributed over an essentially two-dimensional region in three-space. 
Thus, p is interpreted in a distributional sense. However, J is not. It is important to 
view the connecting wire as three-dimensional and not as a one-dimensional filament. 
With a filament the magnetic field (and hence the flux of induction) would be infinite 
and the analysis would break down. 

To pass from the field equations to an equation for the current, the wire is regarded 
as a 'bundle' of circles (with very small gap) of infinitesimal cross-sectional area ds. 
Computing the line integral of each side of (ii) over such a circle yields 

Here x,, x2 are the initial and terminal points of the circle at the gap. Let r denote 
(x-x'l, the distance from the field point to the source point. Since the capacitor is 
small with respect to the circuit, a t  the field points x, and x2 one can ignore the 
retardation rc-' in the time variable in the integral in (iv), i.e. at a field point within 
the capacitor the retardation effects in (iv) are negligible compared to the retardation 
effects in (iii) at any field point within the circuit. Thus, the difference @(x,, I )  - @(x2. 1 )  
is approximately C - ' Q ( t )  where Q(1) is the charge on the capacitor. Using this 
approximation, (iii) and the uniform current assumption, and then integrating with 
respect to d s  over the cross-section, S,  of the wire, one obtains 
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Equivalently, Using I = 0, 
3829 

Observe that there are two initial conditions associated with (3), namely 

Q(0)  = 00 and Q(0)  = 0. ( 4 )  

2. Existence and uniqueness of solutions 

Let L ( z )  be the analytic function defined by 

A P ~ n c t i ~ n  of the fo:m Q::) =e", i E C, is a sokuiion of (3j  if and oniy if z satisfies 

L ( z ) z 2 + C - ' = O .  (6) 

It is clear that solutions of (6) cannot be real, and since L ( z ) =  L ( r ) ,  it follows that 
solutions occur in distinct complex conjugate pairs. 

- 

Let Lo denote the quantity 

and set 

Let w,, denote the quantity (L,C)-"z and observe that f has precisely two zeros, +iu,,. 
Rouchi's theorem (Ahlfors 1979) will imply that g has precisely two zeros (complex 
conjugates as observed earlier) enclosed by the circle /z I  = Mw, if 

M > 1  and (9) 

Jg(z)-f(z) l  <If(z)l for all / zJ  = Mu,, . (10) 

Inequality (10) is satisfied if the following holds for all Izl =Mu,: 

For N > M, the complex version of Taylor's theorem (Ahlfors 1979) implies 

c 
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which for ( z /  = MO, implies 

G F Paulik ef a1 

If e denotes the quantity Mw,r,/c, it follows from (11) and (13) that (9) and (IO) are 
satisfied if M > 1 and 

or choosing, for example, N = 3 M = 6, 

Thus, there exist two distinct solutions, Ql( f )  = e", Q 2 ( f )  = e", /zI < MO,, of (3 )  if 
E <&<i In t. (15) 

C 
r O S -  

300,' 
A bound on r, such as in (16) is not unreasonable considering the uniform current 

assumption. Observe that E serves as an upper bound for the ratio of the circumference 
of the circuit and the wavelength of the emitted radiation. Thus (15) and (16) are in 
the same spirit as the Hertzian dipole approximation (Marion and Hornyak 1982). 
Note that the right side of (16) depends on r, (and rI) via a. 

A solution of the'initial value problem (3),  (4) is obtained by taking linear comhina- 
tion of Q,( t )  and Q2( i). If z = 01 +ip, a, p ER, p > 0, this solution is 

Q ( i ) =  Q ~ e " ' ( c o s P t - a p ~ l s i n p t )  (17) 

with corresponding current 

e"' sin pt. 
Qo(a'+P') 

P 
l ( i ) = -  

It is easy to check that (15), ( 5 )  and (6) imply a<O. Thus, the current decays as it 
oscillates. 

Laplace transform techniques can be used to demonstrate the uniqueness of the 
solution of the initial value problem. Let q ( s )  denote the transform of Q ( 0 .  Applying 
the transform to (3) and using the initial conditions (4) (bearing in mind Q ( 1 )  = Qo 
for f S 0) yields 

The right side of (19) is independent of q ( s ) ;  it follows from Lerchs theorem (Widder 
1941) that the solution (17) is the unique solution with, say, a piecewise continuous 
second derivative of exponential order. 

3. An example 

For values of C, r, and r ,  satisfying ( IS ) ,  it is difficult to find an exact expression for 
Q ( f )  in the form of (17). There is an explicit integral expression for Q ( t )  in terms of 
(19) and the complex inversion formula: 



Analysis of a perfectly conducting capacitive circuit 3831 

However, to solve for Q ( t )  via (20) is not practical. To evaluate the right-hand side 
using the calculus of residues would require knowledge of the zeros of the denominator 
of q ( s ) ,  i.e. the solutions of (6).  Thus, it is more efficient to find the solutions a * @  
of (6) directly and then use them in (17) or (18). Solving (6) is not simple, hut the 
existence and uniqueness result of the previous section permits one to approximate 
the solutions. 

Using Euler’s formula and terms from the series expansions of the exponential, 
cosine and sine functions about the origin, one finds that the integrand in ( 5 )  at 
z = a + i p  is 

Since the gap between the plates is very small, the line integrals in ( 5 )  can he 
approximated by integrals over a full circle. Line integrals of constants over closed 
contours are zero, hence 

Note that tal, IpI < MO, so the terms within the parentheses containing a or p are of 
the order of E’ or E ’ .  Thus, 

IIm L(a+ip)l<< IRe L ( a + i p ) /  ( 2 4 )  

The integral in (25) is the geometric self-inductance of a wire loop. For this and the 
approximation (26), see Becker and Sauter (1982). Note that the quantities in (25 )  
and (26) also approximate Lo. 

Now, for r ,  << r, 

& Is 1, ff r2 dl’.dl  ds’ d s  = - 4 d r ; .  

Thus (22)-(25) imply 

?IcLo4 
3 

~ ( a  + ip) = L~ - i( 3 ap +- 6c3 p3). 
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Using (6) to solve for (29) and (24) yield 

(30) and (31) together imply that a satisfies 

By (26) and the definition of E, the second term in the parentheses is negligible compared 
to the first, so one can rewrite (32) as 

Noting that the coefficient of a is >>1, one can use the quadratic formula (taking the 
term with the plus sign since la( < MO,) and the approximation f i- b - (x/2b) 
to obtain 

Thus (15), (26) and (34) imply la(<< w,, and it follows from (30) that 

pc=o,. (35) 

I(f)=-Q,w,e"'sinw,f. (36) 
Since 1a1<< wo it is interesting to view (18) and (36) from the perspective of an 

underdamped LCR,,, circuit in which C =capacitance of the parallel-plate capacitor, 
L =  C-'(a2+p2)- '  = Lo and 

Using (34) and (35) in (18) one obtains the approximate solution current 

R,,=2aL=2aL0. (37) 
Using (34) in the expression for Rrad, one has 

The right-hand side of (38) is the radiation resistance of a small loop antenna driven 
at an angular frequency w o ,  see Becker and Sauter (1982). Thus, one can approximate 
the solution current with the current of an L,CR,,, circuit in which Lo is the geometric 
self-inductance of the wire loop and Rrad is the radiation reisstance of the loop driven 
at wo= (LoC)-"2. The approximation improves with smaller values of E. 

For a numerical example, if C = 50pF, ro = 0.05m and rl = 0.0005m, then one has 
LO=3.1Ox lO-'H and w0=2.54x IO'S-'. It is easy to check that ro satisfies condition 
(16) and that E = 8.3 x IO-'<< 1. The solution current is 

1 ( 1 ) = - 2 . 5 ~  ~ ~ S Q ~ ~ - ' . O ~ ' ~ - ~ '  sin . 2.5 x loS/. (39) 

Rrrd=6.3 x ohm. (40) 
The current in (39) would decay to half of its maximum amplitude after about 22 years. 

From (38) the radiation resistance is 
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4. Concluding remarks 

This work can be easily generalized to include the case of a normally conducting wire. 
The term '-6 E .  dl' replaces '0' on the left-hand side of (1). Using Ohm's law and 
arguing as one did for (3), one derives 

Here R denotes the electrical resistance of the wire loop. To solve (3') one looks for 
functions Q( 1 )  = e" where z = a + ip satisfies 

L(z)z*+ R ~ + c - '  =o. (6 ' )  

~ ( z ) : = L , z ~ + R z + c - ~  

Comparing the functions 

g(z ) :=  L ( z ) z ~ + R ~ +  c-I (8') 
on a suitably large circle centred at the origin, Rouchi's theorem will imply that g has 
exactly two zeros (counting multiplicity) enclosed within the circle if r,, is not too 
large. However, the analysis is more involved than before as one must consider the 
various possibilities for the zeros of the polynomial f ( z ) .  By way of example, the case 
of complex conjugate roots is outlined here. 

Note that the complex roots off have modulu's w o .  It is easy to see that any zeros 
of g ( z )  must be complex and that they occur in conjugate pairs. Reasoning as before, 
one concludes that (9) and (10) are satisfied if N > M > 1 and 

M - 1)). E <-In( 7 ( M 2  -- 
M N - M  R 

2 N  Lo% 
(It is understood that N and M are chosen such that the right-hand side of (14') is 
positive.) Thus, there are two distinct solutions, Q1( t )  =e", Q2( 1) =e", / z /  < Mwo of 
(3') if 

C N - M  R 
r, <- I n ( 7  ( M 2  -- M - 1)). 

2 o a N  M Lawn 
If E is small enough, say less than ~ 1 4 ,  then it follows from ( 5 )  and (6') that a < O ,  
i.e. the current decays as it oscillates. The uniqueness of the solution of the initial 
value problem can be deduced by employing the Laplace transform. 

The approximation argument is very much the same as before, except that to 
determine a and p one must place (29) in (6') instead of (6). Rather than repeating 
this argument, it is interesting to see how the effects of radiation resistance compare 
to those of electrical resistance, so a different approximation is outlined. 

Let -8 denote the imaginary part of (29) and assume that E<< 1. Thus, 6 is of the 
order Lo. From (6') one has 

. .  

Taking the root of the complex number and using == b+x/2b, one obtains 
2c-16 

J4C- l  Lo - R 2 '  J ( ~ ~ - ' L , - R ' )  - i4C-'S = m - i  ~ (11) 
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Let w” denote the quantity ( W ; - ( R / Z L , , ) ~ ) ” ~ .  Then from (I) and (II) ,  

G F Paulik er a1 

p = R a+- 4 
2L; 2L00 2 o s 2  

Referring back to the numerical example, a copper wire with the stated dimensions 
ohm (Powell 1979). Condition (16‘) is satisfied with has a resistance R = 8 x 

N = 3M = 6 ,  and since E = 8.3 x lo-’ and w o =  w o ,  one sees that 

p = WO== 2.5 x 105 s-I, 

These are the values one would expect from an L,RC circuit; the effects of the radiation 
resistance are negligible compared to those of the electrical resistance. 

The work in this paper can also be generalized to approximate the case of a 
superconducting loop of wire. The idea is to account for the surface current by regarding 
the wire as a hollow, perfectly conducting tube and adjusting integrations accordingly. 
Instead of ( 3 ) ,  one derives 

Here T denotes the circle of radius r,  which is the cross-section of the hollow tube. 
One difference in this setting, for example, is the lower geometric self-inductance of 
the loop: 

( 2 6 )  

As a final remark, note that this work can also he applied to the popular two- 
capacitor problem (Powell 1979), providing a rigorous demonstration of the behaviour 
of the two-capacitor circuit in the absence of electrical resistance. 
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